|

General Physics

New kid on the Block

 Joined: 19 May 2007 Post: 1
3 Sep 2007 09:39:46 IST
0 People liked this
40
3086
How many significant figures are there in 62000?
Engineering Entrance , Medical Entrance , AIPMT , JEE Main , AIIMS , JEE Advanced , Physics

How many significant figures are there in 62000?

Blazing goIITian

Joined: 14 Aug 2007
Posts: 910
9 Sep 2007 21:19:11 IST
0 people liked this

i'm sorry that earlier i gave a wrong answer, the correct answer is 2.the logic behid this is that you don't count zeros towards the right hand side.please rate me.

Cool goIITian

Joined: 23 Jun 2007
Posts: 30
9 Sep 2007 21:28:11 IST
0 people liked this

The significant digits are "6,2,0,0,0"
zeros are also inculded in significant digits because.
because they also account for the accuracy.

So, the answer is five "5". I AM VERY SURE ABOUT THAT.

Cool goIITian

Joined: 23 Jul 2007
Posts: 93
9 Sep 2007 21:30:39 IST
0 people liked this

hey guys,d answer is 2 yaar.d reason is ther's no unit mentioned after d number like cm,m,etc.so this quantity doesnt come out frm any experiment.its jus a pure number right!!!so d answer is 2.i think u got it.do rate me if found useful.

Cool goIITian

Joined: 23 Jun 2007
Posts: 30
9 Sep 2007 21:42:20 IST
0 people liked this

I dont want to fight here.
But i think it is 5.

This can be put to some experts so that everyone may get cleared.
Eventhough the units are not mentioned. Numbers will also have to be ACCURATE.

Blazing goIITian

Joined: 30 May 2007
Posts: 369
9 Sep 2007 21:53:25 IST
0 people liked this

there r only 2 unless the unit is specified

Forum Expert
Joined: 9 Mar 2007
Posts: 259
9 Sep 2007 22:31:55 IST
0 people liked this

### Several Points of Clarification

Significant figures are the easiest way to deal with uncertainty in measurements, but it is not a perfect system. The Mesopotamians invented zero over 2000 years ago. We use it to distinguish when we know there is none. But we also use the zero as a place holder (zero wasn't invented 2 years ago). Zeros used only as place holders are not significant figures while their other use is. Several rules to work around this ambiguity will follow.
Some definitions involve exact numbers. (100 cm = 1 m, 12 = 1 dozen)
Numbers can be exact by count. (5 playing on a basketball team)
Exact numbers have an infinite number of significant figures, so when they are used in a calculation they do not change the number of significant figures.

## Significant Figures Rules

### Quick Reference Section

This section presents the basic rules for significant figures. Read later sections to gain a complete understanding of what these rules really mean!
How does one tell how many significant digits there are in a given number?
* The left most digit (<-) which is not a zero is the most significant digit.
* If the number does not have a decimal point, the right most digit (->) which is not a zero is the least significant digit.
* If the number does have a decimal point, the right most significant digit (->) is the least significant digit, even if it's a zero.
Every digit between the least and most significant digits should be counted as a significant digit.
For example,
according to these rules, all of these numbers have three significant digits:
123

123,000
12.3
1.23 x 106
1.00
0.000123
How many significant figures should one retain in the final answer to a problem?
For results obtained using addition or subtraction, the number of places after the decimal point in the result should be less than or equal to the number of decimal places in every term.
For results obtained using multiplication or division, the number of significant figures in the result should be equal to the number of significant digits in the least precise number (the number with the fewest significant digits given).
It is sometimes good practice to give one more significant figure than is required by these rules; this helps prevent rounding errors if the number is used in later calculations. This extra digit should be in a smaller font to indicate its lesser significance.

## Details and Examples

Introduction
Significant figures are a shorthand way to express how certain one is about one's data and calculations coming from that data. While significant figures are by no means as precise as detailed calculations of the uncertainty of a value, they are a very useful way to estimate uncertainty quickly.
Uncertainty and its Meaning
Any value that is the result of a scientific measurement has some uncertainty. The most precise way to state the uncertainty of a measurement is to write it as a number, plus or minus the expected error in that number. Scientists often use the standard deviation for their expected error. After a measurement has been repeated many times, the standard deviation is determined by averaging the absolute amounts by which each measurement differs from the mean.
Fine Print
For example, if you measured a wire's length 30 times, and got an average length of 28.3 cm, with an average error in that length of about 0.2 cm, you would write the length as (28.3 Â± 0.2) cm if you wanted to be precise about your measurement results. This means that the majority of your measurements fall between 28.1 and 28.5 cm. (To be more specific, it means that 68% of the measurements fall between those two values.)
If, for example, we then wished to find the volume of this wire, and we had a measurement of 2.31 Â± 0.07 mm for the wire's diameter, we would have to put these numbers into the formula for the volume of a cylinder. This would require doing separate calculations for the largest and smallest errors in addition to the calculation for the average values. To be precise in our treatment of uncertainty, we need some complicated mathematics to see how the errors on the individual quantities translate through the formula to become errors on the volume.
But for most measurements you will ever use, a simpler system of dealing with uncertainty will be adequate. This system is the system of significant figures.
Significant Figures: The Simplest Method for Expressing Uncertainties
If we just want an approximate idea of the extent to which a value is certain, and we either don't want to learn the mathematical techniques, or don't want to spend the time to apply them, we can keep track of the amount of certainty of a piece of data simply by paying attention to the number of digits we use to express it. That is to say, where we choose to round off our number tells where we think uncertainty creeps in. For example, if we have a length of 12.37 Â± 0.10 cm, we just call the length 12.4 centimeters, to three significant figures. When we express a number with three significant figures, what we are saying is that the first two digits are essentially exactly correct, and the last one is uncertain by a small amount (generally it is only uncertain by about Â± 1). In the example above, we rounded our answer to 12.4 cm because our answer is uncertain to Â± 0.1 cm, viz., our answer is uncertain in the last digit by about 1.

How Many Digits to Use?
The question of the greatest practical importance is how many digits to include in your final answer. This is important because, as explained above, the number of digits you include in your answer shows the reader the precision of the data leading to the answer, and the accuracy of the answer. It might be useful to read this section again after reading through the following sections which explain how to determine the number of significant digits.

When adding and subtracting numbers, the rules of significant figures require that the number of places after the decimal point in the answer is less than or equal to the number of decimal places in every term in the sum. (Treat subtraction as adding the same number with a negative sign in front of it.) If some of the numbers have no digits after the decimal point, use the same basic rule, but don't record any digits to the right of the last digit in the least significant number. Clarify these rules, are
some examples:

 2355.2342 15600.00 15600 13.7 137000 + 23.24 + 172.49 + 172.49 + 1.3 + 1330 2378.47 15772.49 15800 15.0 138000

Note it is not unusual for a sum to have more significant figures than the measurements added. This is why finding an average gives greater information than a single measurement.
Also note that a difference often has fewer significant figures. This apparent shortcoming is sometimes used by scientists in reverse!  One of the most sensitive tests is to measure a null difference to verify that the much larger opposing forces are equal to an accuracy not directly measurable. Inverse squared force laws have been verified to a large number of significant figures this way.

Multiplication and Division
When multiplying and dividing numbers, the number of significant digits you use is simply the same number of significant figures as is the number with the fewest significant figures.
Some examples:

 13.1 13.10 13.100 1500 15310 1.00 x 2.25 x 2.25 x 2.2500 x 2.315 x 2.3 x 10.04 29.5 29.5 29.475 3400 35000 10.0

Someday calculators may be able to do significant figures; but in the meantime the operators need that wisdom.

Why do Multiplication and Addition Have Different Rules?
When you add two numbers, you add their uncertainties, more or less. If one of the numbers is smaller than the uncertainty of the other, it doesn't make much of a difference to the value (and hence, uncertainty) of the final result. Thus it is the location of the digits, not the amount of digits that is important.
When you multiply two numbers, you more or less multiply the uncertainties. Thus it is the percentage by which you are uncertain that is important -- the uncertainty in the number divided by the number itself. This is given roughly by the number of digits, regardless of their placement in terms of powers of ten. Hence the number of digits is what is important.

Which Digits are "Significant?"
In order to figure out how many significant figures to put into your final answer you must figure out how many significant figures are in each of the numbers you are working with. The rules are best explained separately for fundamental constants, physical constants, numbers not ending in 0 and numbers ending in 0.

Fundamental Constants
Fundamental constants are numbers without units of any kind that come strictly from mathematics; they are not "measured" like most quantities in science. Some examples of these are regular integers such as 2, 10, 14, or 27; fractions such as the 4/3 in the formula:
V = (4/3) (PI) R3,
for the volume of a sphere; and constants such as and e, where e = 2.71828... is the base of the natural logarithms.
When you have one of these numbers, you should never let it determine how many significant figures you have. If the number is an integer or a rational fraction, just assume it has more significant figures that the least accurate of the measurements. When you have an irrational number like (PI), look up as many digits as you need so it has more digits than required by the least accurate measurement.
(Calculators are not programmed to do significant figures because they have no way to recognize which numbers are constants.)

Physical Constants
When you are dealing with a physical constant such as Planck's constant, the speed of light, or the charge of an electron, you should remember that these numbers are found by experiment and do not have any purely mathematical definition. So there may be some occasions where you have a piece of data that is more certain than the best value of your physical constant. In these cases, it is acceptable to let your physical constant define your uncertainty, and hence your number of significant figures.  To avoid this problem it has been a top priority of some scientists to measure these physical constants very accurately.

Numbers Without Zeroes at the End
Numbers without zeroes at the end are the simplest case. When a given piece of data ends in a digit other than zero, all the digits in that measurement are significant digits.

Numbers with Zeroes at the End
Numbers ending in zero are more complicated because zero has two different meanings. In these cases, you must determine whether a zeroes is a significant digit representing the quantity of "none" or just a place holders.Zeroes right (->) of a decimal point are always significant digits because without them the actual value of the number is no different, so we assume they are placed there to show additional certainty in the value of the number. (Zeroes between other significant digits are also always significant.) Any other zero between the last non-zero digit and the decimal point is not a significant digit.

Examples:
* 130 has two significant digits.
* 130.0 has four significant digits.
* 1.000000 has seven significant digits.
* 100000 has one significant digit.
1.30 x 102 is the way you write 130 if you want to make it clear that there are 3, not 2 significant digits in the number.
Perhaps someday there will be universal adoption of another symbol, perhaps #, to represent "none" and end the confusion. For example, 13#0 would have 3 significant digits and be a briefer way to write the identical 1.30 x 103 = 1300 Â± 10.
Exception to the Rules?
For those doing calculations on a calculator (or computer), it is wise to carry through all the digits in the calculator until the very end of the problem, and then truncate your final answer to the correct number of significant digits. In other words, during some intermediate step of the calculation, don't attempt to eliminate the insignificant digits in your calculator or write down an intermediate answer with fewer digits and then re-enter that new number into the calculator. Following the rules above, you might be tempted to round off midway through a problem, but doing so could introduce a small (but sometimes non-negligible) amount of "truncation error."  This is especially prone to happen if you have a complicated calculation involving many steps where truncation errors could accumulate.  In addition, it is possible to make an error re-entering a number.  These types of error are totally avoidable (as opposed to measurement errors, which we are stuck with) and therefore it is best to keep all intermediate digits until the final answer.
As a corollary of the above statement, it is sometimes desirable to add one more significant digit in your answer than the rules presented above would otherwise require. This extra digit should be indicated by a smaller font. One example where this is desirable is if your result is to be plugged into a future calculation where "truncation errors" might occur.
One final exception:  It is acceptable to round off to fewer significant digits when the full information is not needed or helpful. For example one might say their birthday is 6 months away even though it is possible to calculate more precisely.
But generally, stick to the rules above whenever precision and accuracy matters.

Cool goIITian

Joined: 24 Jul 2007
Posts: 61
10 Sep 2007 12:08:05 IST
0 people liked this

right good

Blazing goIITian

Joined: 10 Sep 2007
Posts: 1319
10 Sep 2007 16:13:17 IST
0 people liked this

2 significant figures

Cool goIITian

Joined: 2 Mar 2007
Posts: 51
10 Sep 2007 16:26:52 IST
0 people liked this

if it is a definite number,

there are infinte significant fig

Cool goIITian

Joined: 9 Sep 2007
Posts: 39
11 Sep 2007 15:39:38 IST
0 people liked this

2 significant figures

Moderator
Joined: 16 Dec 2006
Posts: 3373
11 Sep 2007 15:47:24 IST
0 people liked this

u get the significant figures by writing in terms of scientific notation .. ie,
62 X 10 ^3
the significant digits are the number of digits which are not in the power of 10.
so ans is * 2 *

New kid on the Block

Joined: 13 Sep 2007
Posts: 3
15 Sep 2007 20:26:15 IST
0 people liked this

everyone is wrong.it contains infinite significant digits.because u can write it as 6.2x10raise to the power four.or 0.62x10raise to 5 and so on

Hot goIITian

Joined: 9 Dec 2006
Posts: 130
16 Sep 2007 12:39:56 IST
0 people liked this

it has 2 significant figures.
if it had been 62000.0 it would be having 6 significant figures
read rules to find no. of  significant figures from NCERT physics books

Hot goIITian

Joined: 19 Jun 2007
Posts: 143
16 Sep 2007 19:03:20 IST
0 people liked this

i bet the answer is 2 for sure but if the decimal is present in the figure i. e. 62000.0 then the answer will definitely change

Blazing goIITian

Joined: 14 Aug 2007
Posts: 910
16 Sep 2007 21:51:02 IST
0 people liked this

Hot goIITian

Joined: 19 Jun 2007
Posts: 143
17 Sep 2007 09:07:08 IST
0 people liked this

i have written the answer as 2 but i think that i was wrong the answer according to me is infinite

Hot goIITian

Joined: 18 Sep 2007
Posts: 119
18 Sep 2007 23:52:48 IST
1 people liked this

it's ans is definitely 2
as the zero at the right most place is not significant unless it is followed by any unit

Blazing goIITian

Joined: 31 Jan 2007
Posts: 1069
19 Sep 2007 00:03:28 IST
1 people liked this

its 2

concept 0 in right are insignificant

Scorching goIITian

Joined: 21 Jun 2007
Posts: 210
19 Sep 2007 00:07:13 IST
0 people liked this

ans is two

Blazing goIITian

Joined: 2 Mar 2007
Posts: 754
19 Sep 2007 00:11:15 IST
0 people liked this

yeah the ans is 2

 Some HTML allowed. Keep your comments above the belt or risk having them deleted. Signup for a avatar to have your pictures show up by your comment If Members see a thread that violates the Posting Rules, bring it to the attention of the Moderator Team

## For Quick Info

Name

Mobile

E-mail

City

Class

### Find Posts by Topics

Physics

Topics

Mathematics

Chemistry

Biology

Institutes

Parents Corner

Board

Fun Zone

Vertical Limit

Top Contributors
All Time This Month Last Week
1. Bipin Dubey
 Altitude - 16545 m Post - 7958
2. Himanshu
 Altitude - 10925 m Post - 3836
3. Hari Shankar
 Altitude - 9960 m Post - 2185
4. edison
 Altitude - 10815 m Post - 7797
5. Sagar Saxena
 Altitude - 8625 m Post - 8064