|

SMIT UGET

# Sikkim Manipal Institute of Technology Undergraduate(SMIT UGET) Physics Syllabus Part2:

Subject syllabus of Physics Part2 as per Sikkim Manipal Institute of Technology Undergraduate entrance test (SMIT UGET) conducted by Sikkim manipal University, Gangtok, Sikkim is as given below. Part1 SMIT UGET Physics Syllabus

PHYSICS - PART II

Geometrical Optics:
Refraction at a plane surface: Refraction through a parallel sided glass slab - derivation of expressions for lateral shifts and normal shift (object in a denser medium) - total internal reflection and its applications -optical fibers and its application in communication - problems.
Refraction through a prism: Derivation of expression for the refractive index in terms of A and D - dispersion through a prism - experimental arrangement for pure spectrum - deviation produced by a thin prism - dispersive power - mention of condition for dispersion without deviation - problems.
Refraction at a spherical surface: Derivation of the relation connecting n, u, v and r for refraction at a spherical surface (concave towards a point object in a denser medium) - derivation of lens maker’s formula - power of lens - magnification - derivation of expression for the equivalent focal length of combination of two thin lenses in contact - mention of expression for equivalent focal length of two thin lenses separated by a distance - problems.

Physical Optics:
Introduction to Theories of Light: A brief explanation of Newton’s corpuscular theory, Huygens’ wave theory and Maxwell’s electromagnetic theory - mention of expression for speed of light C = 1/??o?o, qualitative explanation of Hertz’s experiment - brief explanation of Planck’s quantum theory of radiation - dual nature of light.

Interference:
Explanation of the phenomenon theory of interference - derivation of conditions for constructive and destructive interference - Young’s double slit experiment, derivation of expression for fringe align - qualitative explanation of interference at thin films and Newton’s rings - problems.

Diffraction: Explanation of the phenomenon - distinction between Fresnel and Fraunhoffer diffraction - qualitative explanation of diffraction at single slit and analysis of diffraction pattern (Fraunhoffer type) - qualitative explanation of plane diffraction grating at normal incidence - limit of resolution - resolving power- Rayleigh’s criterion - definition and mention of expression for resolving powers of microscope and telescope - problems.

Polarisation: Explanation of the phenomenon - representation of polarized and unpolarised light - explanation of plane of polarisation and plane of vibration - methods of producing plane polarised light: by reflection - Brewster’s law, refraction, double refraction, selective absorption - construction and application of polaroids - optical activity - specific rotatory power - construction and working of Laurent’s half shade polarimeter - mention of circularly polarised light - problems.

Speed of light:
Michelson’s rotating mirror experiments to determine speed of light - importance of speed of light.

Electrostatics:

Electric charges: Concept of charge - Coulomb’s law, absolute and permitivity - SI unit of charge.
Electrostatic Field: Concept of electric field - definition of field strength - derivation of expression for the field due to an isolated charge, concept of dipole - mention of expression for the field due to a dipole - definition of dipole moment - mention of expression for torque on a dipole - explanation of polarisation of a dielectric medium - dielectric strength - concept of lines of force and their characteristics - explanation of electric flux - statement and explanation of Gauss theorem and its applications to derive expressions for electric intensity (a) near the surface of a charged conductor (b) near a spherical conductor - concept of electric potential - derivation of the relation between electric field and potential - derivation of expression for potential due to an isolated charge - explanation of potential energy of a system of charges - problems.

Current Electricity:

Electric current:

Microscopic view of current through conductors (random motion of electrons) - explanation of drift velocity and mobility - derivation of expression for current I=neA?d - deduction of Ohm’s law - origin of resistance - definition of resistivity - temperature coefficient of resistance - concept of super conductivity - explanation of critical temperature, critical field and high temperature superconductors - mention of uses of superconductors - thermistors and mention of their uses - colour code for resistors - derivation of expression for effective resistance of resistances in series and parallel - derivation of expression for branch currents - definition of emf and internal resistance of a cell - Ohm’s law applied to a circuit - problems.

Kirchoff’s laws: Statement and explanation of Kirchoff’s laws for electrical network - explanation of Wheastone’s network - derivation of the condition for its balance by applying Kirchoff’s laws - principle of metre bridge - problems.
Magnetic effect of electric current: Magnetic field produced by electric current - statement and explanation of Biot - Savart’s (Laplace’s ) law - derivation of expression for magnetic field at any point on the axis of a circular coil carrying current and hence expression for magnetic field at the centre - current in a circular coil as a magnetic dipole - explanation of magnetic moment of the current loop - mention of expression for the magnetic field due to (i) a straight current carrying conductor (ii) at a point on the axis of a solenoid - basic concepts of terrestrial magnetism - statement and explanation of Tangent law - construction and theory of tangent galvanometer - problems.

Mechanical effect of electric current: Mention of expression for force on a charge moving in magnetic field - mention of expression for force on a conductor carrying current kept in a magnetic field - statement of Fleming’s left hand rule - explanation of magnetic field strength in terms of flux density - derivation of expression for the force between two parallel conductors carrying currents and hence definition of ampere -mention of expression for torque on a current loop kept in an uniform magnetic field - construction and theory of moving coil galvanometer - conversion of a pointer galvanometer into an ammeter and voltmeter - problems.

Electromagnetic Induction: Statement and explanation of Faraday’s laws of electromagnetic induction and Lenz’s law - derivation of expression for emf induced in a rod moving in a uniform magnetic field - explanation of self induction and mutual induction - mention of expression for energy stored in a coil -explanation of eddy currents - alternating currents - derivation of expression for sinusoidal emf - definition of phase and frequency of ac - mention of the expression for instantaneous, peak, rms and average values -derivation of expression for current in case of ac applied to a circuit containing (i) pure resistor (ii) inductor (iii) capacitor - derivation of expression for impedance and current in LCR series circuit by phasor diagram method - explanation of resonance - derivation of expression for resonant frequency - brief account of sharpness of resonance and Q-factor - mention of expression for power in ac circuits - power factor and wattless current - quantitative description of choke - basic ideas of magnetic hysteresis - construction and working of transformers - mention of sources of power loss in transformers - ac meters - principle and working of moving iron meter - qualitative explanation of transmission of electrical power - advantages of ac and dc - problems.

Atomic Physics:
Introduction to atomic physics: Mention of the types of electron emission - description and theory of Dunnington’s method of finding e/m of an electron - explanation of types of spectra; emission and absorption spectra - brief account of Faunhoffer lines - qualitative explanation of electromagnetic spectrum with emphasis on frequency.
Photo electric Effect: Explanation of photo electric effect - experiment to study photo electric effect - experimental observations - Einstein’s photo electric equation and its explanation - principle and uses of photo cells: (i) photo emissive (ii) photo voltaic (iii) photo conductive cells - problems.

Dual nature of matter: Concept of matter waves - arriving at the expression for de Brogile Wave length -principle and working of GP Thomson’s experiment - principle of Electron Microscope, Scanning Electron Microscope, Transmission Electron Microscope and Atomic Force Microscope.
Bohr’s Atom model: Bohr’s atomic model for Hydrogen like atoms - Bohr’s postulates - arriving at the expressions for radius, velocity, energy and wave number - explanation of spectral series of Hydrogen - energy level diagram - explanation of ionization and excitation energy - limitations of Bohr’s theory - qualitative explanation of Sommerfeld & Vector atom models - problems.
Scattering of Light: Explanation of coherent and incoherent scattering off the sky and sea - red at sunrise and sunset - basic concepts and applications of Raman effect.

Lasers: Interaction between energy levels and electromagnetic radiation - laser action -population inversion - optical pumping - properties of lasers - construction and working of Ruby laser - mention of applications of lasers - brief account of photonics.
Nuclear Physics: Characteristics of nucleus - quantitative explanation of liquid drop model - qualitative explanation of nuclear magnetic resonance (NMR) and its applications in medical diagnostics as MRI - nuclear forces and their characteristics - explanation of Einsteins mass - energy relation - definition of amu and eV - arriving at 1 amu = 931 MeV - examples to show the conversion of mass into energy and vice-versa - mass defect - binding energy - specific binding energy - BE curve - packing function.
Nuclear fission with equations - nuclear chain reaction - critical mass - controlled and un-controlled chain reactions - types of nuclear reactors and mention of their principles - disposal of nuclear waste.
Nuclear fusion - stellar energy (carbon & proton cycles) - problems.

Laws of radioactivity - (i) Soddy’s group displacement laws - (ii) decay law - derivation of N=No.e-? - explanation of decay constant - derivation of expression for half life - mention of expression for mean life - relation between half and mean life - units of activity; Bequerrel and Curie - Artificial
Transmutation: Artificial radioactivity - radio isotopes and mention of their uses - brief account of biological effects of radiations and safety measures -problems.
Elementary Particles: Basic concepts of leptons and hadrons - qualitative explanation of ?-decay - neutrino hypothesis and Quarks.

Solid state electronics:
Qualitative explanation of Band theory of solids - classification of conductors, insulators and semiconductors - intrinsic and extrinsic semiconductors - p-type and n-type semiconductors - construction and action of pn-junction - forward and reverse biasing - half wave and full wave rectification - function and application of light emitting diodes - photo diode - laser diode - transistors - npn and pnp transistors - action of transistors - npn transistors as an amplifier in CE mode.

Digital electronics: Logic gates - AND, OR, NOR & NAND symbols and truth table - applications of logic gates (Boolean equations) - half adder and full adder.
Soft condensed matter physics: Liquid crystals - classification, thermotropic (nematic, cholesteric and smectic) and lyotropic liquid crystals - mention of applications of liquid crystals - basic concepts of emulsions, gels & foams.

Contact SIkkim Manipal University
Qualification Criteria SMIT UGET
Physics Syllabus SMIT UGET
Paper Pattern SMIT UGET
Result & Counseling Info

Name

Mobile

E-mail

City

Class