|

Manipal UGET

# Chemistry Syllabus Manipal Under Graduate Entrance Test:

STOICHIOMETRY:

Equivalent mass of elements - definition, principles involved in the determination of equivalent masses of elements by hydrogen displacement method, oxide method, chloride method and inter conversion method (experimental determination not needed). Numerical problems. Equivalent masses of acids, bases and salts.

Atomic mass, Moleqular mass, vapour density-definitions. Relationship between molecular mass and vapour density. Concept of STP conditions. Gram molar volume. Experimental determination of molecular mass of a volatile substance by Victor Meyer's method. Numerical problems.

Mole concept and Avogadro number, numerical problems involving calculation of: Number of moles when the mass of substance is given, the mass of a substance when number of moles are given and number of particles from the mass of the substance. Numerical problems involving mass-mass, mass-volume relationship in chemical reactions.

Expression of concentration of solutions-ppm, normality, molarity and mole fraction. Principles of volumetric analysis- standard solution, titrations and indicators-acid-base (phenolphthalein and methyl orange) and redox (Diphenylamine). Numerical problems.

ATOMIC STRUCTURE:

Introduction- constituents of atoms, their charge and mass.Atomic number and atomic mass.

Wave nature of light, Electromagnetic spectrum-emission spectrum of hydrogen-Lyman series, Balmer series, Paschen series, Brackett series and Pfund series. Rydberg's equation. Numerical problems involving calculation of wavelength and wave numbers of lines in the hydrogen spectrum. Atomic model- Bhor's theory, (derivation of equation for energy and radius not required). Explanation of origin of lines in hydrogen spectrum. Limitations of Bhor's theory. Dual nature of electron- distinction between a particle and a wave. de Broglie's theory. Matter-wave equation (to be derived). Heisenberg's uncertainty principle (Qualitative). Quantum numbers - n, l, m and s and their significance and inter relationship. Concept of orbital- shapes of s, p and d orbitals. Pauli's exclusion principle and aufbau principle. Energy level diagram and (n+1) rule. Electronic configuration of elements with atomic numbers from 1 to 54. Hund's rule of maximum multiplicity.

General electronic configurations of s, p and d block elements.

ORGANIC COMPOUNDS WITH OXYGEN-2, AMINES

Phenols:

Uses of phenol. Classification of Phenols: Mono, di and tri-hydric Phenols
Isolation from coal tar and manufacture by Cumene process.Methods of preparation of phenol from - Sodium benzene sulphonate,Diazonium salts
Chemical properties:Acidity of Phenols-explanation using resonance-Effect of substituents on Acidity(methyl group and nitro group as substituents), Ring substitution reactions-Bromination, Nitration, Friedel-craft's methylation, Kolbe's reaction, Reimer-Tiemann reaction.

Aldehydes and Ketones:
Uses of methanal,benzaldehyde and ace.henone

Nomenclature:
General methods of preparation of aliphatic and aromatic aldehydes and ketones from Alcohols and Calcium salts of carboxylic acids

Common Properties of aldehydes and ketones

a) Addition reactions with - Hydrogen cyanide, sodium bisulphate

b) Condensation reactions with-Hydroxylamine, Hydrazine, Phenyl hydrazine, Semicarbazide

c) Oxidation.

Special reactions of aldehydes:Cannizzaro's reaction-mechanism to be discussed, Aldol condensation, Perkin's reaction, Reducing properties-with Tollen's and Fehling's reagents.Special reaction of ketones-Clemmensen's reduction

Monocarboxylic Acids:

Uses of methanoic acid and ethanoic acid.

Nomenclature and general methods of preparation of aliphatic acids From Alcohols, Cyanoalkanes and Grignard reagent

General properties of aliphatic acids: Reactions with - Sodium bicrbonate, alcohols, Ammonia, Phosphorus pentachloride and soda lime

Strength of acids-explanation using resonance.
Effect of substituents (alkyl group and halogen as substituents)

Amines:

Uses of Aniline
Nomenclature Classification-Primary, Secondary, Tertiary-aliphatic and aromatic.

General methods of preparation of primary amines from - Nitro hydrocarbons, Nitriles(cyano hydrocarbons), Amides(Hoffmann's degradation), General Properties - Alkylation,Nitrous acid, Carbyl amine reaction, Acylation

Tests to distinguish between-Primary, secondary, Tertiary amines-Methylation method.

Interpretaion of Relative Basicity of-Methylamine, Ammonia and Aniline using inductive effect.

HYDROCARBONS-2

Stability of Cycloalkanes-Baeyer's Strain theory-interpretation of the properties of Cycloalkanes, strain less ring. Elucidation of the structure of Benzene - Valence Bond Theory and Molecular Orbital Theory. Mechanism of electrophilic substitution reactions of Benzene-halogenations, nitration, sulphonation and Friedel Craft's reaction.

HALOALKANES

Monohalogen derivaties:

Nomenclature and General methods of preparation from-Alcohols and alkenes.General properties of monohalogen derivatives: Reduction, with alcoholic KOH, Nucleophilic substitution reactions with alcoholic NH?, KCN, AgCN and aqueous KOH, with Magnesium, Wurtz reaction, Wurtz-Fittig's reaction, Friedal-Craft's reaction.

Mechanism of Nucleophilic Substitution reactions- SN1 mechanism of Hydrolysis of teritiary butyl bromide and SN2 mechanism of Hydrolysis of methyl bromide.

COORDINATION COMPOUNDS

Co-ordination compound: Definition, complex ion, ligands, types of ligands-mono, bi, tri and polydentate ligands. Co-ordination number, isomerism (ionization linkage, hydrate), Werner's theory, Sidgwick's theory, and E A N rule, Nomenclature of coordination, compounds.

Valance Bond Theory: sp3, dsp2 and d2sp3 hybridisation taking [Ni(Co)?], [Cu(NH3)4]SO4, K4[Fe(CN)?] respectively as examples.

CHEMICAL BONDING - 2

Covalent bonding-molecular orbital theory :linear combination of atomic orbitals (Qualitative approach), energy level diagram, rules for filling molecular orbitals, bonding and anti bonding orbitals, bond order, electronic configuration of H?, Li? and O? Non existence of He? and paramagnetism of O?.

Metallic bond: Electron gas theory (Electron Sea model), definition of metallic bond, correlation of metallic properties with nature of metallic bond using electron gas theory.

CHEMICAL THERMODYNAMICS-2

Spontaneous and nonSpontaneous process. Criteria for spontaneity-tendency to attain a state of minimum energy and maximum randomness. Entropy-Entropy as a measure of randomness, change in entropy, unit of entropy. Entropy and spontaneity. Second law of thermodynamics. Gibbs' free as a driving force of a reaction Gibbs' equation. Prediction of feasibility of a process in terms of . G using Gibbs' equation. Standard free energy change and its relation to Kp(equation to be assumed). Numerical problems.

SOLIDSTATE

Crystalline and amorphous solids, differences. Types of crystalline solids - covalent, ionic, molecular and metallic solids with suitable examples. Space lattice, lattice points, unit cell and Co- ordination number.

Types of cubic lattice-simple cubic, body centered cubic, face centered cubic and their coordination numbers. Calculation of number of particles in cubic unit cells. Ionic crystals-ionic radius, radius ratio and its relation to co-ordination number and shape. Structures of NaCl and CsCl crystals.

ELECTROCHEMISTRY

Electrolytes and non electrolytes. Electrolysis-Faraday's laws of electrolysis. Numerical problems. Arrhenius theory of electrolytic dissociation, Merits and limitations. Specific conductivities and molar conductivity-definitions and units. Strong and weak electrolytes-examples. Factors affecting conductivity.

Acids and Bases:  Arrhenius' concept, limitations. Bronsted and Lowry's concept, merits and limitations. Lewis concept, Strengths of Acids and Bases - dissociation constants of weak acids and weak bases. Ostwald's dilution law for a weak electrolytes-(equation to be derived) - expression for hydrogen ion concentration of weak acid and hydroxyl ion concentration of weak base - numerical problems.

Ionic product of water. pH concept and pH scale. pKa and pkb values-numerical problems. Buffers, Buffer action, mechanism of buffer action in case of acetate buffer and ammonia buffer. Henderson's equation for pH of a buffer(to be derived). Principle involved in the preparation of buffer of required pH-numerical problems. Ionic equilibrium: common ion effect, solubility product, expression for Ksp of sparingly soluble salts of types AB, A?B and AB?. Relationship between solubility and solubility product of salts of types AB, A?B and AB?. Applications of common ion effect and solubility product in inorganic qualitative analysis. Numerical problems.

Electrode potential: Definition, factors affecting single electrode potential. Standard electrode potential. Nernst's equation for calculating single electrode potential (to be assumed). Construction of electro-chemical cells-illustration using Daniel cell. Cell free energy change [ .Go =-nFEo (to be assumed)].

Reference electrode: Standard Hydrogen Electrode-construction, use of SHE for determination of SRP of other single electrodes. Limitations of SHE.

Electrochemical series and its applications. Corrosion as an electrochemical phenomenon, methods of prevention of corrosion.
Go for manipal UGET Chemistry examination syllabus-2  .

Degree Courses Manipal University
Contact Details Manipal University
Manipal Eligibility Criteria
Manipal Points to Ponder
Manipal Chemistry Syllabus-2
Maths Syllabus-1
Maths Syllabus-2
Physics Syllabus-1
Physics Syllabus-2
English Syllabus
Counseling Procedure
Manipal UGET Result

Name

Mobile

E-mail

City

Class